Article Text

Download PDFPDF
Primary care
Causal inference for clinicians
  1. Steven D Stovitz1,
  2. Ian Shrier2
  1. 1 Department of Family Medicine and Community Health, University of Minnesota System, Minneapolis, Minnesota, USA
  2. 2 Department of Epidemiology, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
  1. Correspondence to Dr Steven D Stovitz, Family Medicine and Community Health, University of Minnesota System, Minneapolis MN 55455-2020, USA; stovitz{at}umn.edu

Abstract

Evidence-based medicine (EBM) calls on clinicians to incorporate the ‘best available evidence’ into clinical decision-making. For decisions regarding treatment, the best evidence is that which determines the causal effect of treatments on the clinical outcomes of interest. Unfortunately, research often provides evidence where associations are not due to cause-and-effect, but rather due to non-causal reasons. These non-causal associations may provide valid evidence for diagnosis or prognosis, but biased evidence for treatment effects. Causal inference aims to determine when we can infer that associations are or are not due to causal effects. Since recommending treatments that do not have beneficial causal effects will not improve health, causal inference can advance the practice of EBM. The purpose of this article is to familiarise clinicians with some of the concepts and terminology that are being used in the field of causal inference, including graphical diagrams known as ‘causal directed acyclic graphs’. In order to demonstrate some of the links between causal inference methods and clinical treatment decision-making, we use a clinical vignette of assessing treatments to lower cardiovascular risk. As the field of causal inference advances, clinicians familiar with the methods and terminology will be able to improve their adherence to the principles of EBM by distinguishing causal effects of treatment from results due to non-causal associations that may be a source of bias.

  • epidemiology
  • statistics

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors SDS and IS: involved in the entire process of this manuscript, from conceptual outline, to writing, to final approval.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Patient consent for publication Not required.